Neurotrophins regulate dendritic growth in developing visual cortex
نویسندگان
چکیده
Although dendritic growth and differentiation are critical for the proper development and function of neocortex, the molecular signals that regulate these processes are largely unknown. The potential role of neurotrophins was tested by treating slices of developing visual cortex with NGF, BDNF, NT-3, or NT-4 and by subsequently visualizing the dendrites of pyramidal neurons using particle-mediated gene transfer. Specific neurotrophins increased the length and complexity of dendrites of defined cell populations. Basal dendrites of neurons in each cortical layer responded most strongly to a single neurotrophin: neurons in layer 4 to BDNF and neurons in layers 5 and 6 to NT-4. In contrast, apical dendrites responded to a range of neurotrophins. On both apical and basal dendrites, the effects of the TrkB receptor ligands, BDNF and NT-4, were distinct. The spectrum of neurotrophic actions and the laminar specificity of these actions implicate endogenous neurotrophins as regulatory signals in the development of specific dendritic patterns in mammalian neocortex.
منابع مشابه
Opposing Roles for Endogenous BDNF and NT-3 in Regulating Cortical Dendritic Growth
Neurons within each layer of cerebral cortex express multiple members of the neurotrophin family and their corresponding receptors. This multiplicity could provide functional redundancy; alternatively, different neurotrophins may direct distinct aspects of cortical neuronal growth and differentiation. By neutralizing endogenous neurotrophins in organotypic slices of developing cortex with Trk r...
متن کاملNeurotrophins in the developing and regenerating visual system.
The neurotrophins NGF, BDNF, NT-3 and NT-4 have a wide range of effects in the development and regeneration of neural circuits in the visual system of vertebrates. This review focuses on the localization and functions of neurotrophins in the retina, lateral geniculate nucleus, suprachiasmatic nucleus, superior colliculus/optic tectum, and isthmic nuclei. Research of the past 20 years has shown ...
متن کاملInsulin-like growth factor I stimulates dendritic growth in primary somatosensory cortex.
The temporal and spatial distributions of several growth factors suggest roles in the regulation of neuronal differentiation in the neocortex. Among such growth factors, the insulin-like growth factors (IGF-I and -II) are of particular interest because they are available to neurons from multiple sources under independent control. IGF-I is produced by many neurons throughout the brain and also b...
متن کاملAction of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملAction of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 15 شماره
صفحات -
تاریخ انتشار 1995